
Executive Summary

Magecart-style web skimmers, aimed at stealing credit card
numbers and other financial information, are continuously
appearing on legitimate, unsuspecting websites. These attacks
are carried out with increasingly complex JavaScript, deployed
to websites through large-scale web framework exploitation,
or through compromises of website hosting providers.
Within the past year, a technique that abuses the Blockchain,
known as “EtherHiding” has been especially popular with actors
who steal financial data through these attacks. Blockchain
delivery provides a seamless, immutable way to deliver malicious
code, which also evades most traditional web traffic detection.
MageCart specifically combines this tradecraft with the use
of WebSockets, a method of streaming web content to and

from a browser, to create an attack chain that is increasingly
obfuscated and hidden from the eyes of defenders.

Trinity Cyber continues to prevent campaigns in the wild abusing
blockchain infrastructure to load malicious code in a victim’s
browser. This technique allows attackers to blend into legitimate
traffic, rapidly change infrastructure, and scale attacks without
relying on traditional malicious domains.

In this blog, we define key concepts in current EtherHiding and
web-skimming attacks and analyze one particular in-the-wild
campaign that displays a facinating attack chain; combining
lightweight JavaScript loaders, decentralized infrastructure,
and trusted service abuse to bypass traditional solutions.

Magecart
A distributed criminal group which focuses on injecting malicious
JavaScript into legitimate e-commerce websites with the goal
of stealing PII and/or financial information.

Web Skimming
The act of stealing financial information (primarily credit
card numbers) via malicious code found on legitimate,
but compromised websites.

Client-Side Injection
Unauthorized JavaScript execution within a user’s browser,
commonly originating from legitimate, but infected websites.

Lightweight Loader
Compact code whose purpose is to download and execute
further malicious code at runtime.

EtherHiding
The abuse of decentralized blockchain infrastructure to host
and deliver malicious code.

Authors: Jared Grumbein and Stephane Fonkam

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 1

LOST IN THE ETHER

Unravelling a JavaScript
Card Skimming Campaign

Key Terms and Definitions

Web skimming attacks have traditionally relied on a simple
but effective model: Compromise a legitimate website,
inject malicious JavaScript, and exfiltrate sensitive user data
directly from the browser. Early Magecart-style campaigns
typically hosted their malicious scripts on attacker-controlled
infrastructure which can be taken down quickly.

As defensive controls evolved, attackers adapted. Malicious
scripts became smaller and increasingly obfuscated; delivery
mechanisms became more complex. While these changes
increased attacker resilience, they still depended on centralized
resources that defenders could easily identify and block.

Recent campaigns represent a further evolution through
weaponization of the decentralized nature of blockchain
technology. This technique of storing malicious code is attractive
for attackers, providing high availability at low cost while resisting
traditional takedown methods. This shift fundamentally alters
the defender’s challenge. The web traffic appears legitimate,
infrastructure is difficult to remove, and static indicators lose
effectiveness. Read on to learn more about how these modern
campaigns operate in practice.

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 2

Technical Analysis
	→ Stage 1: Smart Contract Loader

The first stage of this attack begins with an obfuscated JavaScript
loader planted on legitimate e-commerce websites, commonly
through exploiting vulnerabilities or compromising credentials.

The loader contains a hard-coded Ethereum cryptocurrency address
used to retrieve a smart contract hosted on the Binance Smart Chain
(BSC). Smart contracts are compiled, self-executing programs written
in Solidity and stored on the blockchain that enable decentralized
agreements and transactions between parties. [1]. These programs
are designed to be executed on the Ethereum Virtual Machine (EVM),
a decentralized computer on the Ethereum network [2]. The delivered
smart contracts, however, contain hidden JavaScript, which the
attacker has encoded twice, first in Base64 and then in hexadecimal.
The JavaScript loader performs the decoding before executing the
code in the victim’s browser.

The loader contains a hard-coded Ethereum cryptocurrency
address used to retrieve a smart contract hosted on the Binance
Smart Chain (BSC). Smart contracts are compiled, self-executing
programs written in Solidity and stored on the blockchain that enable
decentralized agreements and transactions between parties. [1].
These programs are designed to be executed on the Ethereum
Virtual Machine (EVM), a decentralized computer on the Ethereum
network [2]. The delivered smart contracts, however, contain hidden
JavaScript, which the attacker has encoded twice, first in Base64
and then in hexadecimal. The JavaScript loader performs the
decoding before executing the code in the victim’s browser.

The script loops through eight hard-coded URLs providing
API access to the Binance Smart Chain.

Background

Figure 1. Sample of obfuscated JavaScript loader code

Figure 2. Hard-coded Binance Smart Chain URLs

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 2

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 3

It then sends a JSON-RPC request over HTTP to the selected URL to interact with smart contracts using
the eth_call method. This method enables execution of a specific function stored in a smart contract.

The response contains hexidecimal, Base64-encoded JavaScript within the result key of the JSON
returned. The JavaScript loader decodes and executes this code.

•	 eth_call: method allowing execution of a specific function in a smart contract

•	 0x3596A5D8fDD13763482De91A4ca74B7dbcBd98f9: Ethereum address
used to look up the malicious smart contract

•	 0xe2179b8e: identifier of the function to execute within the smart contract

Figure 3. Request to Binance Smart Chain

Figure 4. Binance Smart Chain response

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 3

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 4

	→ Stage 2: Skimmer Loader
The script retrieved from the Binance Smart Chain acts as a second loader which performs anti-analysis checks
before sending a C2 (command and control) check-in to Magecart infrastructure in the form of a WebSocket upgrade
request.

Figure 5. Second-stage loader

Figure 6. Config initialization

Figure 7. Anti-analysis checks

It first initializes a configuration by defining a C2 URL, then stores a unique victim identifier in the
__cl_gw local storage item and sets a C2 heartbeat interval of 30000 milliseconds (30 seconds).

The code performs anti-analysis checks to terminate execution if the Firebug debugger
or abnormal window sizes are detected.

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 5

	→ Stage 3: Magecart Skimmer
The final stage encompasses a sophisticated web skimmer with
roughly 3,800 lines of JavaScript, obfuscated using the ObfuscatorIO
JavaScript obfuscator. It silently harvests payment information and
login credentials from form fields, then exfiltrates this data over
a WebSocket connection. These techniques are consistent with
Magecart techniques, which have been well documented since their
emergence in 2023.

The code employs several techniques to hinder analysis, including:

•	 String encryption

•	 Variable name reuse

•	 Debugger protection

•	 Control Flow Flattening (CFF)

C2 Setup
The skimmer establishes a WebSocket connection to a hardcoded
C2 URL. Of note, the referrer URL is stored in the “?source” query
parameter, which is used to determine whether the victim is on a
page of interest such as a checkout or login page.

If the browser passes these checks, the second-stage loader retrieves the final Magecart skimmer script
over a WebSocket connection, dynamically inserts the script into the browser’s document object model
(DOM), then immediately removes itself upon execution.

Figure 8. Dynamic script injection

Figure 9. Connection setup functions

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 5

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 6

	→ Stage 3: Card Skimmer
The code dynamically inserts a fake Stripe payment form into the checkout page, where the below fields
are targeted for exfiltration.

JavaScript Event Listeners silently capture payment information entered in form fields, a technique known
as Formjacking, which is then stored in the ‘ars’ local storage item.

Figure 10. Code for fake Stripe payment form

Figure 11. Fake payment form

Figure 12. Formjacking code

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 6

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 7

	→ Stage 4: Exfiltration
The skimmer then retrieves the stolen data is from ‘ars’ and exfiltrates it over WebSocket along with other
information such as the infected site’s domain, the gif_va cookie value containing a unique identifier, and the
browser’s User-Agent.

Exfiltrated data is formatted as Base64-encoded JSON strings.

If an error is encountered during exfiltration, the data is queued in the ‘data_queue’ local storage item.

Data in the queue is processed for exfiltration every 5000 milliseconds (5 seconds).

Figure 13. Exfiltration function 1

Figure 14. Exfiltration function 2

Figure 15. Data queuing function

Figure 16. Queue processing function

These campaigns progress through multiple stages, each designed to evade conventional
defenses. Trinity Cyber’s Full Content Inspection (FCI) offers comprehensive coverage of the attack
chain at each stage, stripping network sessions of malicious content without affecting the end
user’s browsing experience. The JavaScript broken down in this blog, regardless of obfuscation,
does not evade FCI.

1.	 https://www.investopedia.com/terms/s/smart-contracts.asp

2.	 https://www.coinbase.com/learn/crypto-glossary/what-is-the-ethereum-virtual-machine

Type Description Value

URL MageCart C2 wss[://]chat[.]faxnamegl[.]top

URL MageCart C2 wss[://]kezopersuc[.]xyz

URL MageCart C2 wss[://]woo-gateway[.]com

SHA256 Hash Card Skimmer
(JavaScript) f4338b8835edbf4d685d5ce0d8d6dce87ce305c9bddd79ecfa4a66d6513f3c15

Schedule a live demo with Trinity Cyber.
TrinityCyber.com

Want to see how Full Content Inspection defeats attacks
like this before they reach your users?

© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 8© Trinity Cyber, 2026. All rights reserved.		 trinitycyber.com | 8

Coverage: Layered Defense Across the Attack Chain

Indicators of Compromise

References

